免费网站看v片在线18禁无码-亚洲中文字幕高清乱码在线-国内免费久久久久久久久久-人人爽人人爽-亚洲а∨天堂久久精品9966

歡迎來到冀群(江蘇)儀器有限公司網(wǎng)站!
咨詢熱線

13236572657

當前位置:首頁  >  技術文章  >  英國 Labplant 噴霧干燥儀在奶粉中的應用

英國 Labplant 噴霧干燥儀在奶粉中的應用

更新時間:2021-11-30  |  點擊率:2385

英國 Labplant 噴霧干燥儀在奶粉中的應用

 

Labplant spray dryer tests

 

 

The milk used was reconstituted in the following way:

 

200g  milk powder

 

1.7L of tap water

 

giving 2L of milk with a measured density of 1.045 at 21’C.

 

We used a fixed flow, whatever the experiment ; pump flow set at 5, corresponding to

13.5mL/min.

 

Varying the injection temperature of the product

 

We did a first test with an injection temperature of 130’C and then a second test at 140’C.

 We saw that spray drying was achieved, apparently, comfortably at these two 

temperatures.Effectively no liquid ran along the walls of the main spray chamber, even at

130’C. This meant that we could work at 140’C or 130’C given the stipulated flow.

In theory it is preferable to work at 140’C, because the higher the temperature the better

the yield. We will try to prove this through our experiments.

 

Varying the compressed air ratio / feed flow

 

 

We worked with a flow set at 5 (13.5mL/min) and compressed air set at 3 bars

(constant air inlet valve opening).

 

In theory to increase the size of the agglomerate, it is necessary to favour the agglomeration

 mechanism over the drying process. One of the possible means is to decrease the spraying

 rate. In the case of this equipment, to decrease the spraying rate you can either decrease the

flow of compressed air through the injection nozzle (while keeping a constant pressure) or

you can decrease the pressure of the compressed air (while keeping a constant flow).

 

Therefore we tried two tests with constant air and liquid flows, varying the pressure from 2

to 3 bars.We observed the look of the powders we obtained ; it was difficult to decide just

with the naked eye, an additional granulometric(?) study would be necessary, but it did seem

that the powder obtained with 3 bars of pressure was effectively finer than that obtained with

 2 bars.

 

Research into the effective operational limits of the spray dryer

 

 

We retained the same solution of reconstituted milk.

 

At a given flow and pressure of air, we increased the flow of liquid from level 5

(13.5mL/min) to level 10 (28.8mL/min). We very quickly saw that the formation of the

spray in the atomisation tube was not good : in effect the quantity of liquid going through

the tube was too much and could not be vaporised on exiting the tube. This was why we had

some liquid that ran out of the tube, ran along the walls of the spray chamber, of the fan

chamber (cyclone?) and even in the recuperation chamber. Under these conditions the yield

of finished product would be bad.

 

QUANTITATIVE STUDY

 

 

The experiments carried out and the experiment details are given below.

 

Experiment 1 : starting from 100g/L of reconstituted milk

 

Amount of milk powder

 200g


Amount of water

  1700g


Volume of milk

2L


Density of milk

      1.045g/mL


Humidity of milk

        89.47 % mas


Injection temp (??)

  130’C


Injection flow

       13.5mL/min


Working time

  40 min


Compressed air pressure

 3 bars


Humidity of labo

     21.8 %HR

   6g vapour / m3 air

Ventilator flow

   70 m3/h


Gas exit temp

77’C


Air exit humidity

    18.8 %HR

    21.3g vapour / m3 air

Bottle size

339g


Bottle + wet milk

391.9


Bottle + dry milk

           390


 

From the experiment details we calculated the following:

 

humidity of the milk : 100 x water mass (water mass + powder mass)

 

numerical application : % humidity of the milk = 100 x 1700/(1700+200) = approx 89.5%

the mass of the wet milk we collected = 391.9 – 339 = 52.9g

 

the mass of the dry matter we collected = 390 – 339 = 51g

 

humidity of the solid = 100 x (52.9 – 51)/52.9 = approx 3.6%

 

Materials ‘balance sheet’ of the dry milk over the life of the experiment:

 

at the start : dry matter is the result of the solution to be tested

 

at the exit : dry matter of the solid that was obtained

 

Numerical application

 

a) at the start : 13.5mL/min x 1.045 g/mL x 40 min x (100-89.47)/100 = approx 59.4g

b) at the exit : 51g

 

c) solid yield = 100 x 51 / 59.4 = approx 85.9%

 

Materials ‘balance sheet’ of the water over the life of the experiment

 

b) at the start : (13.5mL/min x 1.045 g/mL x 40 min x 89.47 / 100) + 70 m3/h x 6 g/m3 x40/60 = 784.8 approx of water

 

c) at the exit : (52.9g x 3.6 /100) + (70m3/h x 21.3 g/m3 x 40/60) = approx 995.9

 

d) water yield = 100 x 995.9 / 784.8 = approx 127%

 


主站蜘蛛池模板: 国产成人亚洲精品无码青青草原| 国产精品无码一区二区桃花视频 | 免费精品99久久国产综合精品| 国产精品毛片完整版视频| 国产国产精品人在线观看 | 毛片免费全部无码播放| 无码成人1000部免费视频| 亚洲男人的天堂成人www| 日本阿v免费观看视频| 欧美亚洲精品一区二区| 黑人30厘米少妇高潮全部进入| 国产精品亚洲产品一区二区三区| 人人妻一区二区三区| 色欲综合一区二区三区| 精品人妻伦九区久久aaa片| 亚洲成成品网站源码中国有限公司| 国产精品国产三级国产专区53| 中文精品久久久久鬼色| 欧美黑人欧美精品刺激| 国产精品www夜色视频| 女女互磨互喷水高潮les呻吟| 国产人妻大战黑人20p| 国产欧美国产精品第一区| 亚洲男人的天堂在线播放| 国产亚洲精品电影网站在线观看| 精品国产yw在线观看| 日本无遮挡真人祼交视频| 亚洲女人的天堂www| 免费人成在线视频无码| 少妇被粗大的猛烈进出96影院| 久久精品国产久精国产爱| 亚洲欧美闷骚少妇影院| 影音先锋女人aa鲁色资源| 国产激情久久久久影院老熟女| 无码亲近乱子伦免费视频在线观看 | 18禁男女无遮挡啪啪网站| 人人妻人人澡人人爽人人精品 | 日本一区二区三区专线| 男人添女人下部高潮全视频| 午夜天堂av久久久噜噜噜| 亚韩精品中文字幕无码视频|